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bstrac

Many problems in the theory of nolze and other ran'om functions
can be formulated ss the problem of finding t' e probabllity iistribution

of the functional

u = K(t') V (x(t'))dt

where K(t) and Vi{x) are xrnown functions and x(t) is u ramiom function
of known statistical properties. The problem of finding the pro!ebility
distritution of the nolse output of 4 receiver consistin; of a filter,

a detector, and a seccnd filter ie of tnis tyne. Methods wiilt be
4iscussed wi.ich have led to solutions of tult ~roblem in some epecial
cases. In the case of rui'{!imensionally Murkofftun x(t, the r:oblem
wiil be shown to te e .valent tc «r i{ntegral e:uaticn, wnich i{n many

cases of interest reduces to n i{fferential e uation.

(1) :
Presente! a4t * e Oympori o or Ctatistical Mecrnis {r. Communication
‘I-,n.zinv ering, herkeley, Au:ust 17-13, 1G53,
(2) : ,
At precert on leave ot The Institute Cor Advance! Tt ad,

“ry

Princeton, N. J.
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1. Prersquisites to any theory of si nal letection ir the
presence of noise are the ilstrituticon of obeervable values in the
presence of noite ani simal and in the presence of noise xlone.
rnerally, these are not known. Fver thcur'h the source of noise may
be known and the ncise my, at the source, have simple and well-
known stutistical properties {és in the case of thermal and snotnoisé},
siinal and noise have to pass through intricate devices before ob-
servatior, and are presented to the observer as a random process with
statiatical properties which «re senerally much ~ore complicated
than thoe of the orivinal noise. The cbserved ocutput at any time
ia a functional of siznal and noise, that is a juantity which depends —-
in a marner determined by the detectiondevice —~ on the values a:-sumed
by eiygnmal 4nd noite up to the *ime of observation.

There {8 st present no systematic theory cf the probability dis-
tritution of such functionnls. It is the purpose of tiis paper to
survey metnocs wnich ive lad to results in rome cases of {nterest
in enjimmering arplicaticrna. In the case of the .uadratic detector,
wve shall give a form of the result which may lend {tself be'ter to
sctial evaluation. Finally, we will present ar a-proach to the problem
which may lead to s« more systematic treatment. Cur presentation will
be limiten to the case of noise =lone, but usumlly the generslization
to noise ami eiygnal joes not lead 'o a much more difficult problem

1f the cass of noise alone has been solved.

o

<. A linear device {35 dafine< as a Jevice which responds to

ut vo. GRS (¢ . 3
fnput voltages v, (1, v. oty o o . with outpats v21(t,, vzz(t), .« ..
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in such a wvay, that the response to a linear combination of inputs

v a3, vlk(t) with constant coefficlents a I8 the output

; e

k
v.(t) = a, v..(t). If, furthermore, for any t , v.(t - t ) becomes
2 SOy Yl 16 Tmore, Yt T o

A,

k

vz(t - to), the device responds to a sinuscidal {nput eyi"’t with an output

)eitstv

Y (% and is, therefore, cocpletely descri ed by giving the function

Y(.) for all circular frequencies /', (ur survey will actually be limited
to passive linsar devices of this type, but many of the results could be
easily seneralized. OSince an arbitrary {rnjut v,(t, car be written as a

1

Pourier inte ;ral the output can be writter as

(L) - L Y((.» funt G_ fot! (t') 30 A \?)

(2.1) v e , ® vl

/

or, after inte  raticrn over . as

(2.2) vzkt‘ = < (B =rg) vl(t')it'
where

P
(2.3) A0 e AT vy et u

(o iy N 3l
Sometimes {t is useful to write (..0) with & “hance of viriw'les as
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For a passive linear network (?) must vanish for 7 < (, {.e. all singu-

l'ritiea of Y(¢) must lle in the upper half of the complex plane. we

thus have

(2.21) () e L RU) vt - e

A linear network {3 thu: represente: by » linear oper~tor, which physically
represents the response of the network tc & uni*® impulse at tire zero.

Defining the functicr R(") by

.

(2.9) R = A (G - e

om can write Y(:) 2 in the form

[I - '>
(2.4) T (W) . =/; e 5l R(*)d” = 2[07 ~os v R(M)d’r

o

or one can write 7} {r the form

7
) | |
(2-5> R(f) = %/ eid :Y(")|2dw

1. we will now a-are that vl(t) {8 statistically known, i.e.

that we xre iven

3.1) x, < '1“1> <xp e oAx) \
|

, |
X, i vl(tz) < x, ¢ dxz'

Joint prob ) - — { = Hn(xl’ tla Xz, tzg R N tn)dx1 dx2 3o &

(t ) <X +dx

X <v
I 1" "n n n . . . dx
n
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for any arbitr ry number of arbitrary time instants tj. We will say

that v(t) is stationary, if 1ts stetintical deccription remains unchanzed,

when the time i1s shifted, i.e. Hn is unchanged {f all tl's are replaced

by tJ * ‘o' The general problem is to find the correspondirg protabllity
description for the cutput vz(t). Cne can give a formal solutior of this
problem for the general -ase, but it is of no practical value, since in
the only case in which it can be ev-iusrted, the solution can be ob'ained
more simply by other me:sns.

Some statisticrl properties of v, Are, however, eadil,; obtained.

The averagJA) ;2, .., i3 simply

oo

?2 - 71 /( (ORI - Y(c)'v'1
o]

The covariance of v, is given by

4

SR RO A Oy BN PP IS IN O KN R e oy (T

thus for prooesses of zero mean, the normalize? correlation fun~t!{on becomes

,/H(") pJ( F - B8)d”

(3.3) p,6) = J/“(ﬁl AT) p(8 - 7y e T)AG dr,
<)) <) o (6 = 70 d g [R(:) py(7)a "

where R'r) e Aefined hr Fq (2.1) apd oy and p, are, respectively, the

norma. tze: corre.e'l n Suincticns ¢f v, oant Vz' The: fnctfon 4
i

R ) /
\ 4o i N s
The 'srizcrtel bar are Lie symbolc > will re use! inter-
cnarcenrcly for tne ercemble average, .
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c'n thus be interpre'e! as e correlation function cf the outmut in the
limit of {nfini‘«ly enort correlaticn time ¢f the {nput. Fgq (1.3) can

of curse alsc ue obtaired from the re.ation bLetweer the power spectra

31(:‘) and 32([‘) [—r a o Ln] of v, and 2 recpectively,
"=y 5.(f) = ly(znr)l G, (f)

by means of the Wiener=Khintchine thecremi

(5)
(3.5) pl(F) -[02"1” Gl(f‘)d.f //Gl(f)d!‘
2 2 2

wrere G, und G, are defined for neg-tive argument by 31( -f) = Gl(f).

2 2
Using Fys (2.4) and (5.5) we et
. 2eifr | 2
(3.6) ,‘)2([)/ GJ(A)dr ./. !Y\2nf‘) Jl(r)dr
i ¢ -

= [R(”) pl(l"-/')dt'/ ’.ll(f)df

Using this ejuaticon, with ( = 0, we get
(1.7) [’}?(f)df - [ R(7Y) pl(f‘)cm :

since pzko) = 1 and pl(") {s ~n even function of /. ¥q (3.3) then

follows from Eis (3.6) and (3.7).

(S . :
) c.f. M. C. wrng oane 5. E. " lenoeck, Hev. Mol. F: ‘s, DB
1945 p 326,
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In principle one ccull avaluate xmoments of rultiple products

Vé(tlj vz(i,T’. 5 o vz(tn) and obt+in at least %%~ -~har=-teristic function

of W_for v., but the cozputaticnal ‘avor irvolved will {n ;eneral be
n

2'
prohibitive, ‘pproximations can be obtained in the liritin- cazes of
networks whose pas: baris ar. either wery wi<e or very narrow. 'me then
expects that the protebility fun-tions of tue o:tput can te aprroxizat-d
starting «ith the promability functions of -le irput irn the “irs* case,
and with jaussian functicns in tne second case.

The pronlem of ‘inding Hn for \F sixp.illes grestly .hen the input

is Jeusiian. A stetionary Soussian rrocess :=n be defire! i{n various

ways, which are all e ;uivelert., ne may e.s. Jive the cnracteriscic

function ~— 12
. i -
vi — Kk v(tk) ) . x € p(t‘ te)
b k N
(3'-‘) e = @

2 2 , y .
where J s« v andi p\() {s the norom.ize? correlaticon function. Alter-

native.v we ey stute tne fcrmda fcor tne roments of nroiucts:

N\

/ 2 & e
\ a {4
v(t,) v(t.; . . . vt = RO B ([ ..
1 < 2n A = 0 Tk e’
Av A2
ail
irs
(3.9)
vit,) vit ..Vt «
1 2). ’n o« 1 ’
AV
wiere rn {s 4 nocitive {n*teyer,
A lirenr inte-ry. Yorem 104) v(t)~t of 4 s*cticnary jausci'n
ranior funct.orn vit) dea q Guuneiur ilstrir tion, as -re gee &, T4 Y
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corsiiering the charrcteristic function

’ ) m
{2 qlt) v\t)d:\‘ - <%% Li&lf }iq(o) v(e,dt
m! )

[SRVAN

iv ) '
o

L. e h
- la) quuk) st TTotey) Z

T

P S
GNG) ?
(Si \n f /’{QL (::
Y ’ /
Cemem -
o all
pairs

cince *he num er of wavs of fiviiin, tne tire {nstan-es into different
YA | /

n n
slre te (On)! 7/ 27°nl (There mre (2n)! permitwtions, :ut 2 exchanyes of

the ar:rente ant nl permututions of the fact-rs give rc new divisicn

p 2 2
. \ © -k
3.1 eiz qut) v(t)dt . . 2
N Av
with
3-11) B = { ) 1 -

Trnis shous thet the first {istrirution of'/<(t - ") v(r)d {s ua:rirn.

7o chew trat the cutput of n o Tinear device ieg o staticrary euselan

Frocess {f tne in Ut i3, we chose sapecially for a(t) the functlon
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(3.1, ) =2 NSty - t)

and obtuln < “. , (

'3-l‘v) e = =

where
V,15) B =z <! o St 7] (= ") At di (-
. — - N - 4 4
* J , k 27 7k 1’ L i 1 A |
[/ S
Kyl
Ueing '; (3.3, we ~+y write * = in the form
(3.1¢ )2P = “'# = Party =ty
! " Kk 72 'k L
S
12
Z l ,
with & s v, g 9Etadin
2 2 -~
- o«
A 2 .
> ¢ -t\
1 V(e )N - — P &
\ - - IS JK ) k < X -
\ Jes ( (3] — / = =] —
\ y
This has e e of U3.3) -t wil, Uhewetapes §oal tie T EL o (e
linear ne*w rx Tor pouaclan drour 1 ety sl onorrecea,
Clrce we reve drotr e derivarttleor uer t (34, e fefinition of
ae i Bemiasn Sropednts, We caz D ert dodrcore o0t s a(t) Bee :av
2 o gl ©
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me can use F:s (3.11) ant (3.1.) elio *o citalr the f~fint ils-

‘rivuticr of the expaunsion coefficien*s ¢t a st-tionury iuusesian function
vit) i+ any ortho-normal sys*em of functicns u (t,, e.;. in triconozetric
functionr. Suppose, for instance, *het u (t) ere ort.o-nermal in (C, T)
ar.d write

T

4

/

c, = v{th ugit) e

)

me tner ctooce ((t) = N Su Lty et wet
I3 14
—
. S _ ’EE

, . CO 2
(s B2 ) e — = e

x + + *
UoTty) Dty = bl () e e
»v b ¢ s r A Pl
= o
e
3 el q
Le axre, moEGEl flckent. wFf L Lqmiel o waRlat gl a0 et g
-y PR -
ecla. .y [ .o Teptiil Ll We el eolCr Ut ortd o oncrmal s, faen e
L2
soltltie Tothe {r'woryl e, i
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(3.19) Xv‘%(‘j) - plYy - t2) u_'t.z) dt2
[+]
With this choice we have

(3.20) (. “ -

i.e. the coefficients become independent Gaussiar variavles with mean

tero and mean square c% - 02 lv. de can thus construct a Gaussian

process by writing

v(t) = o 8 X»uv(t)

“

vhere tle a are independent Caussian variables with mean zero and mean
square unity(.é) white noise, {,e. a Caussian noise with infinitely
short correlation time, can be representec in any orthogonal system.

T

If p(t)/l/p(.") d. approaches 6(t), amy orthogonal s=t functicns w,it)

9
satisfies the integral equation, with eigenvalues \ = 'cil, d7, 80

°
that we can expand white noise irn any orthogunal syster i{: the {irm

(3.21) v(t) = DS__ au (t)

where the coefficients a are {ndependent Taussian variabias of mean
tero and variance unity.

Note that the cosfficients woula not have becore ime;, endent {f
we had ex;anced vit ) in a Fourier ser.es. For =sufficiently large T,
however, the correiation cetween the coefficients becores very small,
so that we can write the Ja.ssian procesc cver a large time i{nterval

as & foirier saries with independent laussian varia’.es as coefficlien's. '’

167 Y. Yarhunen, Ann. Ac Cci. Fennicas, AI, 3L, Helsinki, 19L6.
M. Fac and A. J. r. “iegert, Ann. Math. Stat, 18,37 1947
(7} S. ©. hice, el Tel., J. 23, 282, 19LLg 25, 16, 19L5,
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If a Gaussian noise pasrces through & detector, tre output of

erties of this no:—Ga.ssian

For ':svance, if v, t) is tre tetector o.trut 1atires iy 7,
UERILY) vt = Vv (t)
. \"2
the first nrova::iity lersity v(vj) of v, 1s obtlaire! as
(L4e2) wiv )= Wiwv. )& v. - Vv )‘ dv,
J 2 \ 27/ 4
W ere '-';vz,‘ ts the prouvability 1ensity of S This can be simplified to
T
4 dV(x\
\
Iu'oj 'l\vj * 'ZJI/ ' 4y
) v
N 3
4 )
R
w'ere the val.ey v, “" are the rcots of
)
\ J
4 LI Vv - v
- , 2 3
if the rccots are t:s°.:ct,
(T Lot er wvay £ afini: - the dete tor Meivelope catector™, i
\ 2 P
LI v, ot o= v t, + Vv ¥
25 23
where v. t' &n: v, t ars Dbta.cre: oy writing v, 't as a moc.lated
2¢ <o ]
carrier
VAN CR=] t cw ot v, (b osin ot
< JC LS
an! where {: 1ractical ;r vlem o Carn he Crosel 3ust a8 to nmaxe Yo )
[ ) . g 4 e cos8
amis w, i\ t, showiy varrly fockious wf W, eun @rev o U @ t, Jivce
28 K : tn o
in the appiizativie the Secerle filtar ws.aily will ot pass {re.zencins
of ‘reer « , *ne " “ie betweer o, ani (L.1' 4. isually ‘rrelevart,
{

The spectrum of v3

i{s obtaired by the metrod of U, U. North by

computing first the covariance anc the avarage f{ v.i
-~
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(4.5) vi(ty) vilt,) Vix,) ”‘1,‘1;"2‘2’ &y ax,
(L.6) v, = Wix) Vx) o
where W, 15 the sacond joint probability function of vz(t). This

yields the correlation function from which the power spactrum can
be computed by means of the wiener-ihintchine thecrenm.
A majcr problem arises . f one asks for the probability functions

of the filtered detector output vh(t)
(o] @
(L.7) vh(t) - K(°) vj(t - )de= K()V v

o e
Solutions of wis problem have beern cbtained only in very few special

NN N
2(t-.) d

cases. There ars of course trivial limiting cases, e.g. if V(x, =~<x
there is no detector and the two filters can be cconsicered as one
linear device, and ‘f K(t, degenerates ‘nto s §- function, there is

nc second filter., Als., if the bandwidth of the seconc f'lter becomes
veary small vu t) will in peneral vecome Jaissian again, and the mean
and stancard deviation of 'L are usuaily eas!.y ootiined,

-~

. 4 ‘
A solution for the special care Vx = x |, v aussian was obtained

“

by M. Kac and the autnor 9', in the sense that the characterist!c function
of the pronabil'ty distribution coul: e axyressed hy mcans of the

solutions of a certain, not too farid table, integral equation,

(5] M. Rac ana A, T, ¥, Ci.gert, ilys. nev. 70, LLS, 1946 and J.
Applied imys.cs 1 , 33, 19,7 (Tre latter paper treats the envelope detecter.,)
K. C. merson, J. Appliea ihysis, 2L, 116¢, 1953

~
\

The special case K(t, = 1 for O4tcl, zero otrerwisr, V(x) = x" and x(t) =
s .

. [{t) dt where 1(t) is white noise i.e. Xxit) is the Wiener fu.ction was
treated hy .. i, vaperon an! w, T, Martin, ./, Math. and Physics, 23, 195,

190,
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Actually the preceding consiuerations already impliecd a solution

of a still more apecialized problem of this type, namsly the case

K(t) =
) for ¢t T

which 18 the case ~f the ideal !ntegrator circuit. Since we had the

representation
x
(L4e9) v,(t) =0 a ‘—\ u (t)
we have
=
(L.10) voit) dt = of .? 1y

4

(o]

wity independent ncrmal varisbles a . Thus the character‘stic function

becomes o
b) 2
{0 1,2\,- . 02 an -a? /2
kd-u) [ ] : - [ ] d‘
' Tn
!
- 1l - 210"\'

The same result im cbtaine: with arbitrary weighting function K(%),

1f the nurm‘«rs A are defined a: tre eigenvalues of the integral sjuation

. [P y - o - )
(Lo12) K{ 1) P (-1 L'\ 1’ d 3 R ()

h]
1 o

This can ve snown 0y nsing the co-cept of "white noise™ or -- {f one
warts to av id the representat: n by wiite noise -- {n the following

wayt The etectcr i{nput {s axpanced irn the series
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(L.13) v,(t - ")=o e X it

A

Since the process ‘s stationary the statistical properties of the
variables ¢, do not depend on t. The output of the secorc [ilter is

then

(hu1h) vt a0 B ol @ A N
o oo N I '

oy
The functions /| () are crthogonal with welght functicon K("), anc can

he normalized so that

/

(i 1s5) () ,“(‘)»(‘)d‘ =6

because they are eigerfunetions of the integral equasi»>n (..12). Thus

we have

The stat.stica. pronert.eas of tie variar.es ¢ rmus<t =>w _e chosen such

that v, t' i= ‘a:sefan with mean zer , un!t stan.ard teviation anc

correlatic: functicn p ",. If we choose tne varfables ¢ to bes incependent

- =2 _ .
and Gaussian with e = J, ¢ = 1 we have

(L.16) v, (R ¥(8,) =18 € e .ty at) AN

- 0 x' ',\t'l)".(tl’)

The zux Jon the right-ran sf ‘e must ne 0w~ to be pt. - t_ ), Jne
4

"

sees thie cv expancing plt., - %, as a fonctiorn, o0 t in the ‘rtnogonal
- [

~

sSys tem (TN

“
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.17) p(ty - t,) = g ()7 () -16-
To determine the coafficierts g \t,l) we multiply both sidee by K(tz)\xp\'tz)

and integrate over tz.

/

(4.18)  K(t,) p(ty - t)) 7 (t,)de, = g (4)) K(ty)f (2] ())de,

Using (L.15, on the r.r.s., and (L.12) on the 1l.h.s. we get

(L4.19) *P‘u(‘1)' ‘u(‘l)'

we thus have from (,.16)
. 2
(5e20) '2(‘1) vz(tz) -0 p(t.1 - tz)

An altermat!ve cerivation s ortained oy writing v, as f1ltered

white nyise. One then has

/

(L.21) v2(t - ") s 3(8-") vl(t - 9)de

and

(Le22) v - K( )d*/ U ) :(e2 -9 vt - el) v (t - 92)dnl d02

is expaniea ir terms of a met of functicns u_, which

The white noise v y

1

are chosen tc ve the asigenfunctions of the integral equation

~ ) -/ ’\
(Lel3) \ u_(el) (91, 82) u_(az)de2
with
(1,.24) (AN RO B W8y - T) Qe - dv,
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Substituting the expansinn

—

n\ ’ - -
(Le25) vy (t 91) D a

—

) uV(el)

above and using the integral equation yields
(Le26) v, * ) a® ) .

The integral equation can be brcught intc the previous form by

integrating after multiplication with u(’l - °1)' and subst!tuting

(Le27) p (‘1\ - ~(91 - 1) u (el)da1

4

We then have

(L.28) \', PO = aley = 7)) JKC) (8y = ") (8, =7) u (8,)d " ce, d8)

=/ K(7)Qley - ) qley - ‘)deL Jo(a”

/ 8

The integral ir parenthesis is obtained by expressing Vz("l) 52(‘.23~1n
two ways:

2

(La29) '-2<"1) v2(t2> - <12;>(t.1 - t.2) -] Q(Q.1 -9) t.'(t.2 - 8)cH

—

'The latter follows from (..21, anc L.Z_H)‘. It follows that DZ‘A', - oZ\L
and we have the former result,

To find the characteristic function of the probability distribution
f the output for a networx consisting of & Jualratic detector thus
requires the solution of a homogeneous integral equation and the evalua-
tion of an {nfinite prouuct, Fartunateliy both problems are not quite as

forrivanle as they appear.



P=l19
10-29=53
-1°%-

The infinite produet is a Fredholm determinant and can be evaluated

in terms of the solution of an inhomogeneous integral equation closely

(10)

relatec to the homogeneous integral equation . For completeness we
will gilve here a heuristic derivation in the notation suitable for our

purposes., we note first

(Le30)

»
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we will show that the kernal
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is essentially the Volterra reciprocal function of our kermel K(T) ;>(T1 -1).
1f 4 ( ") and X are its eigenvalues and eigenfunctions,
To sce this cne uses the original 1nt§gral equatior. to evaluate the

expression

(‘0033) G(’, 2|‘) = 21‘ , K( ‘1) 9( .-i = 'r) G(" » ‘2‘()d“1

and one ohtains
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(10)  Whittaker anc Watson, =SSy, Cambridge “niversity
press, 19.), sec 11.2]1 examples 1, 2 and sec 11,22,



The function G\’l, Ay ) 13 tnus the soluticn of the .nh.m rereous
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integral egJuation
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Iinstead of solving e ,nm gerenis incegral etuation an: evaluatitg
the infin'te oroduct one can thus scolve trhe inhom oy e us .. legral
equation  ...35 an. evaluate we ao .nle iccegral L 00,

If the firat :ilter s o7 & umpe? G.roalsl Molwors ar. trne 1:et fg
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lower degree than : (®). We r~w form the operators Irl( - 15{) and

1
P2( - 15{) by substituting ( - 15{) for ® in the polyromials, We

ther. get
R ;TI~:_i§§; plt) = 1/21  Y(w) ° ;f;;;-el‘* &
=1/2 0 ¢ w - w (1)
he integral equation thus reduces to
(L.42) AR R T T 121 oo T
m),\,z,,-giw “’\"2') '(-'-2)

and further to the ciff.rential eqg.atiun

\ho 3)
d .\ .. . . d S _ 8 -
sz - 13'-') L7 2; ) - 24 Pl( - ip) K( ) G( - 2; ) Pl( 131) 6(

This means that nne has to find twc solutions of the linear differential

ecuation
(Loa?) (P, = 24'P,K) G =0
< o
vall : for . > and 59 respectively and match thiese solutions at
‘m ‘5 such that the s::.pgularity on the r.h.s. is octained,

S. The npreceding secti :. has veer alrmost axclusivaely cevoted to

the evaluati . n of the claracteristic furctinn of the pr dability distri-
=

’ 7
butior. of [ K(t) x (t)at, with x(t) Sauss:an, because this s the only

S

case ~n' > has beern sclved for arb trary X(t) an: correlation function.
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One case involving a linear detector has been solved by M. Kac (*‘1’,

wvho calculated the characteristic function for tle probability distri-

bution of /1 | j 1{)d dt where [(.) is white noise.
b

Closely related to the prohlems cons! .ered here are the prob.ems of

finding the probability distr.buticn of the first passage time, maximum

2)

(
and range of a random function 1 . PFor instance, tle prooariiity that
x(t) remains emaller than or equal to a chnsen val.e b in the time
t
interval (0,’) is the proba:ility that | V/x(t) dt = ’, with
)

V(x) = O for x ‘b and V(x) = 1 for x b, since witn tuis croice of
r

V(x) the integral / Vx(t) ct {s the total time curiig w.ich x(t,. b,
(o]

Problems of this type have been sclved i special casss. The com n
feature of these special cases whi h mace the so.ution ;»ssible is tnhat
these &re cases with Marxoffian x(t). In the engineer::g ;roblems uncer
consideration here x(t) will not {- yeneral be Markoffian but will often

13)

be & compornen’ of a vector functio: wiich is Mar.offian .

\
(L) W, Yac, Tram. Am. Path. soc. 55, w1, 19.b

(12) ¥, trdds and M. Kac, #ull., am. Math. S-c, 52, 272, 1746
A. J. ¥, Glegert, ‘'hys. Xev, 7, 617, 19051 and papers_’mr_\t,ed there.,
W, Peller, Ann. Math. Stat, 22, .27, 1951
D. A. Darling and A. J. F. >Tegert, rahl =/3f revised and Ann. Math. “tat.

in press)

(13) M. C. wang ana 3. E, "hienbeck, ref 5 section 3, An example
(output of n, L, O circuit with white nolse input) {s treated in detail
in section 10 of ref.
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We will now snow how the general prublem of fincing the characteristie
©

function of kit) V (x(t))dt reduces to the problem of solving an integral
)
equation {f x(t) is the projection of a multicdimensional Marxoffian process,

and how, in certain cases of interest, the integral equation can be further

reduced to a partial differential equ;tion(u‘). We assume that x(t) is

{
a cerponent of a stationary 15), continucus m—cimer.sional Markoffian
process, i.e, that z(t) is either Markoffian {tself or that there are

m-one functions v( 1) (2)
(1)

(m -

\
(L s Le), & sl .; ¥ *)(t) such that the vectar

process x\t), v ST e v l’H.) is Markoffian, 4e will write
the following equations for the two dimensicral process o:ily but they can

be immeiiately generalizea,

we use the notation

- xyx(t)ax ¢ ax

FAN

*t7 40int prob = W(Xx, v)dx dv
v.v(t) v ¢+ dy
and
5¢7) o )
x x(t) x + dx x(to)'xo
conaitional prob if - lx , v | x, v, t - tn)dx dv
v vit). v + uvw v.t,h)-vo

in order to obtain the :'~sirec crarac'eristic functior

95
N\

S sf) ;(8) = expt =z  K()Vx()d)
\ Av

UL A, J. F, Stegert, Two Intepgral rguations fur the Claracteristic
Functione of Cartal: Fun tio als of Multidaime:siornal Marxof“iar Processes
(Mimeograrhed).,

D. A, Jarl:ng and A. J, F, Slegert, FAND ieport P-l;.9.

/'1 y
5) The assumpt! 1. of stat! nar'ty could be easily eliminated,
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we will first consiier the function
U
Ve ) ' / t \
iz\xo, \i | X, vy t) = \.xp - K(T) v x(ﬂ)d' . o(x - x(t) ov-vit) X, Y
® i Av
Jo? Yo
wWhaere( " denotes the contitional average taken with the restriction
o\

x(0) = X v(o) = V.. W~e novw obtain an integral equation far k by .nter-

preting éx(('), v/ () as the patn of a particle «.ich at time = 0 {s located

{
\

at X s ¥, and is at that time white, anc whict meves in a medium which can

mexe it black, The expression t X't) v(x,/!t is for the pre=ent assumad
non-negativo(lé) and {8 interpreted as the nrobadility that the particle
becomes black ‘n the time interval (t, t ¢ dt), if 4t is locatea at

ix, . ( (17)

. T™e probabili*y of bla-ker ry i: the time ‘nterval (o, t

N

if the particle mves on a fixed path . x(' ), v( ) 4s then given by

-1 5? k() v/x(T) d~

) o The expression . \x, v ]x, v, t,Ix cdv {s, therefore,
the probability that tre particle {s found at time ¢ {n the rectangle

{x, X ¢+ dxy v, v cwh and is still write, (f it started at’ = O

white at X0 Vo o An ntegra. emuation for = e nbtained v writing

the prchability tix , v_ |x, ¥: ti 4v that the partic.e ‘s at t ‘n the
rectargle« x, x + dxy v, v + iv . as the sum of the probability that the
particle is =t41l]l white, and preovanility trat it is viack, The latter

probabliity s tre probability that it was hlacaered at some intermediate

time t' while {: the rectangle'x', x' ¢+ Zx'; v',6 v' ¢ uv' and then

A -
This assumption can bs elimi‘nated by a wors formal iarivation

of the resulta.

'l

- -\ 3 < 2 \
(47, we coull have woraed with the more gereral axjression #x, v, t
instead of the special form kit, Vix,.
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moved black to be Attin‘x,x’dx;v,v0dv}. We thus have

(5.6) P(xo, Vo (X5 V) t) = R(xo, AT t) .

+ 2 | EK(t')ded R(xo v lxr, viy t') V(x') P(x', v' ‘x, v, t - tt)éx! dv!

This is to be cons.terec as an integral equation for h(xo, ALY t)
in the variables x, v, t, w.ere x, and A enter ~nly as Tixed paranctars,
Since we are ':teregted only in

(Sb?) l(‘) = ii: ) H\xO' VO) :’((xo 'O X, v} t)dxo dvoa dv

we ~an eiiminate tle purarelers X ard v, by multiply ng »oth sides aof

equation vy '.»."xo, vo)\txo dvo and {mtepriting over X Vs obtalning thus

(5.8) Wx, v) = iix, v; t)

L A Ectt)at' wi(x', vy t') Vix') P(x', v' x, v, t - t')ax' dv!
)

with n(x, v} ¢t, = Wix , v , a\X v 'X, vV} t,dx uv
\"‘,\o’o’\oo’;)oo

If P satisfies a Fokkar ilanck ecuation

(5.9) S
wvith 1nitial condition
(5.10) Fx , v, x,v, )) = 8(x - x ) 8(v - vo) ,

where L 15 a d:{ferenti1al operator acting on x a:d v, the integral
equation reduces to a partial dfferential equation, since we get dy

cperating with L - J% on Eq (5.6)1
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(5.11) D e (L - c&) Rix g, v, X t)

- zK(t)/ H(xo, v, X v') Vix') ¥(x', v' x, v, o)dx' dv'
or

(5.12) L= zkit) Vix) - -;{ Mxo, v 'x, v, t) =0

For R(x, vy t) one obta:ns the same i ferential equation, The initial

mnditions are obtained from the integral equat! s as

\5.13) h(xo, voOX, V) ) e 8y - xo) 8y - v
and

\Selly) nx, v, U =dx,v),

respectively.

If x(t, ie itaelf -arko>f{:ar, tae varianles ¥ snd v do not occur
and the operator . -perates on x on.y, dtherwise the tiar.vation is
unchange:. For tne spec.al case °! tne miener [rocess .un onv cimension,
anc wito, Xt = i for D€ t < 1, sarov clnerw.se & .. ferert iarivation
of equations corresponiiiy LO ( 1.t  &nu S.ic, Was g‘ven oy M, F.aclll .
We o nct rnow as yet whatner the above consi-arat:ons w!li telp *o
increase approciably the number O cases { & whicn & axact solution
of oI’ yr v.sa 18 Loas.U e, Lven LU s L8 ot the casu we Dalievs
that {t !s Zesiprc o to 'iive 0 ot 0 L0 Al Ve Loe few existing
solitions which at the orescnt seer tc roc:'re a s-ecial metrod feor
each casae,

For prac*! ai rurpo<es !t mav o 7 ‘ntare;%t to corsi er the :: ' gral

1) , ,

M. Kac, “roc, ¢f the "ecund sarkeley Svmpoaium or Math, ‘tat,

and ‘Trb., 1°91, 7. of "al‘fornla Fress, p 154-215,
Closely related {s the Kramers equation, ii, A. Kramers, :hLysica 7, .., 1-
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aquation

(5.15) (v, ‘x, v, t) = R(x , v, Xy v, t)

} | - -

' ' ' ') | OBl = (¢ 1) ' .
K ct R\xr)vox,v,t)LK(t,V\x, Kolt.,Vo(x,4

O\

|
* F.o\x', v'ix, v, t -t d&x'dv'

which relates the solutio:. }x(xo, vol x, v, t, »f (5.,6) to the solution

SNE SO | X, ¥, t' of the !ntegral eqiation obtaired from 1 5.6) hy

repiacing F(t' vV x') dby Ko(t.') Vo(x'). This integral eguat!i = can be

obtained bv an argument quite similar to the ors used to obtain (5.6)

out ‘nvolvirg a mixture of two blackening madia, with black-ning

probability z.‘(o t, VO x Jt and z K(t, Vi(x) - Ko(t) Vofx) dt, respectively.

k ana +, arse i:terpreted respectively as the probabilities of finding

the particle at t in - X, Xx ¢+ dxy v, ve+dy in the presence >f bdoth

melia ard in trhe presarce of tre first meiium alone. 1Y Ro(xo, 4 i x, v, t)
{9 anown, S,10 can he used -- by siccessive appraximations -- to obtain
appraximittors feor . X to‘ x, v, t' for cases in which lii\t) Vix) -

}’.o‘t, Vv ))— Lo osulficiantly small, we thus 'ave a perturbation method

whiot enahles us to ~otaln e p. the effect Hf leviaticns from the guadratic

jetector law on ‘e pronability aistribution of the noise output by successive

ap;raximations,



